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FOREWORD
1t4

Thi s report is a Final Report sumar iz ing research supported by the

U.S. A rmy Research Office under Grant No. DAAG29-74-G-O11O, Project No.

P-11944-EL. This Final Report covers the entire period of the grant,

from March 1, 1974 to April 15, 1977.

The main computer system problem areas investigated were concerned with

multiprograming and paging systems, diagnostic compilers and debugging ,

and decision tables. Related areas i nvestigated incl ude Petri nets,

grammatical inference, and mathematical optimization techniques .

I
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SUMMARY OF RESEARCH

The main problem areas investigated were multiprograming and paging

systems, diagnosti c compilers and debugging, and decision tables .

In the area of multiprograming and paging , we have studied the probl ems

of optimal pagination (how to distribute program code and data into pages),

replacement (how to decide which pages residing in main memory should

next be removed), allotment (how to decide how many pages of each of

several competing programs should be permi tted in main memory), and scheduling

(how to decide which programs should be active as a function of time). Of

special note is the fact that, for a Markov program model , it is possible

to calculate page fault costs for any given replacement algorithm and

memory size. In prin ciple , it is then possible to determine the best of

a class of suboptimal replacement policies.

In  the area of diagnostic compilers and debugging, we have studied

on one hand the possibility of exploiting computer architectural features

to facilate the debugging task , and on the other hand some implications

of diagnostic objectives on computer architectural designs as well as on

languages and programing metkic’tology.

During the last half of the grant period , work on both of the two

foregoing areas led to a consideration of decision tables--first , as an

example of multiprocessing with redundancy constraints , and second, as an

alternative to algorithmic languages wi th potential reliab ility advantages.

£ In addition , we have also studied a number of decidab ilf t.y questions

related to Petri net models of concurrent processes, dev i sed a new procedure

for inferring gramars, and examined approximate methods for solving dynamic

programing problems .

— - >• -~ —~~~~~~~~...
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A. M(JLTIPROGRAMMING AND PAG ING SYSTEMS

Structura l information for Virtual Memo~~j~ nagement [1,2,3)

We have examined methods of using a priori knowl edge of program structure

information for virtual memory management. A model of program behavior

based upon localities was adopted (a locali~~ is a set of pages which are

used together in time), and a priori estimates of these localities can be

obta i ned by using information about program connectivity . Then this

structural information is used in new pagination , replacement , and memory

allocation algorithms [1,2].

For the pag ination problem , a primary shortcoming in most earlier

solutions is the assumption of single page localities imp lici4ly made in

adopting the criterion of minimizing the number of interpage references.

We have instead adopted a space-time cost criterion which includes the cost of

references made outside the resident set (the current locality), as well

as the cost of main memory occup ied at any time . We amend another major

shortcoming by treating data as a class separate from instructions. A

locality then consists of instruction and data sublocalities.

For segregated pag ination it would be desirable to distribute data such

that all the data required by an instruction sublocality is grouped together.

Of course , this cannot be satisfied for all instruction sublocalities , since

data may be comon to different instruction sublocalities . However ,

paginating data nodes so as to minimize the total number of pages (of data)

possibly referenced by each instruction sublocality , so that a maximum number

of data pages can be kept in mai n memory for a given resident set size ,

can be done using just structural information. If inter-locality reference

frequencies can be estimated , the pag ination can be carried out to minimize

an expected space-time cost.

With regard to demand-paging replacement , we have shown how optimal page
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replacement decisions can be determined , by means of dynamic programing .

utilizing page structure information. (This Is based on a stochastic control

process model of demand-paging systems [3]). We have also proposed two new

“optimal” algorithms , optimal in the sense of minimi z i ng the expected
number of page faults , under Markovian and locality assumptions on program

execution. LPR(N1, based upon knowledge of transition probab ilities among

pages, replaces a page wI th the Least Probability of Reference along all

paths of length < N from the currently referenced page. This may be

regarded as a generalization of LIP ~[4J which would replace that page

with Least Transition Probability (i.e. least prob~billty of next reference).

INR, eased upon structural rather than probab ilistic information , replaces

a page which has the maximum Interval (path length) of Next Reference from

the currently referenced page. INR replacement may be regarded as a

real i zable approximation to Belady ’s unrealizabl e optimal algorithm. Both

schemes would replace a page wi th “furthest” next reference , except in

case of INR this informati on is normally a conservative estimate. The

maximum value of INR obtained from structural information guarantees that

the page will not be referenced before that interval . INR may also be

contrasted wi th LNR [4], which would replace that page with longest

expected next reference (based upon probabilistic rather than structural

information).

— Exemptive replacement algorithiis divide the resident set into an

exempt set, e.g. the set of pages which have a path of length < N from

the currently referenced page , and a nonexempt set. The page selected

to be replaced is the lowest ranking , based upon conventional reference

history i nformation , page in the latter set. Conditions under which

exemptive replacement is provably better (in terms of page fault costs)
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than the underlying historical algorithm were studied: the main condition

is that a page exempted from replacement must not rise in ranking unless

it is referenced.

Memojy~~]~cation is divided into three sub-problems : allotment ,

locality size estimation , and locality membership determination . For

allotment , i.e. the division of main memory resources among programs ,

we have shown under probabilistic assumptions that for non-identica l

programs an “optimal” allotment must at least equal the locality size

estimate and that “excess” memory ~eust be distributed in proportion to

variances in locality size. To estimate locality size , we have employed

Bayesian decision techniques to combine structural and historical

information. An a priori estimate can be made based upon page connectivity ,

and posteriori estimates can be made based upon reference-history

samples. Finally, the problem of memory membership, i.e. determination

of what pages to keep as members of the l ocality , is considered for a

pre-loadiri~ environment. (For demand paging, the choice of a replacement

algorithm determines the loading strategy.) A priori information on local-

ities is used to load an entire locality as a batch at the time it is

entered. This saves a large number of page faults which would occur

if the pages of a locality were loaded separately.

Results for Markov PaginjModels [5,6)

Given a Markov chain model of paging programs for any given (realizable)

replacement algorithm and memory size (page allotment), the page fault

probability can be calculated by standard statistical techniques [7,8].

Furthermore, if the replacement problem is formulated as a Markovian

decision process , Howard ’s policy iteration algorithm can be used to
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find an optima l replacement pol icy [7,9]. These two concepts provide the

basis for the solution of several unresolved optimal paging problems

for a page-fault cost criterion .

Prior solutions to the optimal p~ j p~~jon problem are unrealistic
because they do not take into account environmental (run-time) considera-

tions -- e.g. replacement policies and page allotment. The ability to

calculate page fault probabilities for any given replacement pol icy and

page allotment provides the basis for determining optimal paginations with

respect to these environmental factors. Since there are only a finite

num ber of paginations possible for any program , the optimal one can

therefore be determined , in principle in not in practice , if in no

other way than by enumerative methods.

A formal solution to the optima l allotment (partitioning) problem

requires a quantitative spec ification of criterion functions Ck(m), the

cost of allotting m page frames to program k of size 
~k 

The optima l set

of page allotments minim izes the sum i kCk(mk) subject to space limitat ions

and various multiprograming or scheduling constraints . The abilit y to

calculate page fault probabilities for any given replacement policy and

page allotment provides the basis for solving this optimization problem

(for a page-fault cost criterion). We emphasize that the replacement

pol icy is a parameter.

Howar d’s policy iteration procedure may be used to determine the

best of given classes of replacement policies (e.g. where decisions

depend only upon the program state, memory state, or next referenced page).

Each class of policies may be associated with a constraint on the associated

Markovian decision process. One class of constraint , implicitly adopted

heretofore , is where replacement decisions may not depend upon program

__
—_-vvnr- 

~~~~~~~~ -‘--- S. ... -_- . _.
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structure information . “Exemptive ” algorithms , as proposed before,

relaxes this constraint. The ability to calculate page fault probabilities

permits the value of an exemption based upon a given page connection

to be determined by comparing page-fault costs with and without use of the

exemption , thereby reducing run-time overhead for checking connectivity

information that does not yield a counter -balancing improvement in

performance.

tima l Resource Allocation Among Parallel Processes [10]

Optimal allocation of resources (e.g. page frames) among competing

parallel processes has been formulated as a problem in finding the

shortest path (or route) in a directed graph. This formulation requires

a quantitative measure of the performance of each process as a function

of its resource allocation: for k = 1,... ,N , let C~(q~) denote a non-

negative real measure of the performance of process 
~k 

given an allocation

of integral size 
~~~~~~ 

The routing problem can be solved , for example ,

by dynamic programming.

In general , C~(q~) may be a time-varying function , C~(q~,t), in

which case the routing problem may be re-solved “every so often ” yielding

time-varying allocations q~*(~)~ The discrete times at which reallocations

may be made can depend upon time-slices , process blockings , monitored

process performance measures , or a priori information . -

A reformulation of the problem to take into account real location

costs (in part to reflect the overhead required to change the amount of

resources allocated to any process , and in part to reflect the calculations

required to re-solve the routing problem) has been made. Furthermore , by

allowing q~(t) to be zero , our formulation automatically yields the optima l

_____________________  

. 

____ ______________  ____
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“degree of multiprograming ” (number of active processes). After solving

for the optimal set of allocation s, {q~*(~) fk = 1,... ,N), the optima l

degree of multiprogra mming is simply the number of nonzero

If a priori (statistical) knowl edge of C~(q~. t + 
~~
), ~ 

> 0, is

available , the allocation problem may be formulated as a (Markovian)

multistage decision process. An optimal sequence of allocations (i.e.

“schedule ”) in this context must then minimiz e the sum of the allocation

costs over time . Dynamic programming is general izable to this class of

problems .

When parallel processes are not independent , so that they interfere

if executed concurrently [.11], allocation decisions should take into

account the dependencies. For example , if processes are partially ordered

according to a tempora l precedence relation , for (say) determinacy reasons ,

then resources should be allocated at any point in time only to “elig ible ”

processes whose predecessors have all been completed . If (cyclic)

processes must satisfy synchronization or exclusion constraints , again

only certain processes are “elig ibl e” for resources. Formally, we may set

the allocation costs for ineligible processes arbitrarily high , and

use the foregoing procedures to distribute resources among the el i gible

processes.

When allocation of resources is constrained by “soft” precedence

relations among processes, where there may be preferred rather than

absolute precedences (superseding other measures of allocation cost), a

problem of a different nature arises. We may in this case associate a

higher cost with one ordering of two processes than another , where we

assume these costs are independent of the sizes of the allocations.

Then the optima l ordering of the processes can be found by solving a 

~~~~~~~~~~~ --
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“traveling-salesperson ” routing problem--e.g. by dynamic programing.

The situation may arise in parallel processing applications where a

set of processes has “redundancies. ” A process , for example , may no

longer be necessary dependi ng upon the outcomes of certain other processes ,

so that it would be wasteful to execute the former process first. If

decisions as to whether or not to execute processes depend upon others ,

the problem of determining an optimal hierarchy (tree) of process

executions arises. This problem has also been solved by means of

dynamic progra ri~ning.

If we assume nonpreemptible resources , or more weakly that there is

a nonzero l ower bound on the amount of resources a process can be

allocated once activated (possibly a time-var ying bound), then requests

for additional resources by processes cannot be granted on demand without

risk of a “deadlock” [ii]. The shortest path may then no longer be

an acceptable solution to the optima l resource allocation problem. In

this event , a “safety” constraint may be formally added to the optimization

problem .

An alternative approach is the direct utilization of dynamic programing

to determine the k-th shortest path , for k 1, 2 The smallest

k for which the k-th shortest path does not violate the safety criterion

then yields the desired solution . We note that if no such path exists ,

the system is initiall y deadlocked. In this event , one or more of

the deadlocked processes must be “aborted” to effect a recovery , at a

cost which sho (ild be minimized

One method of preventing deadlocks where there are different

types of resources is to require that processes use the resources in a

fixed order. Given this ordering of resources , the problem of optimally

ordering processes is a “flow-shop ” problem, solvable by means of dynamic

progranifling for two resource types.

--- S.- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — - —  - —
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B. DIAGNOSTIC COMPILERS AND DEBUGGING

Microarchitectu reS and Debugging [1,2,3]

Microprocessor implementations of compilers and associated run-time

environments (e.g. “pipelin ing ”) have long been suggested for efficiency

reasons. It is reasonable to expect then that many methods for improving

diagnostic capabilities that are impractical to implement in software

will turn out to be practical if implemented in hardware or firmware .

Therefore we have investigated computer architectural features that

would facilitate the debugging task. “Tagged” architectures [4] may be

used for implementing traps , for example. However , we have limited our

study primarily to microprocessor designs. While microprograms for

diagnosing hardware errors have long been used and remain of continuing

interest , little has been done at the micropro gramming level for

diagnosing user program software errors.

Suitable microprocessor architectures can aid syntactic error

detection and correction . If microprograms are used to perform context

checks , then parsing approaches previously discounted as too inefficient ,

but which have diagnostic advantages , may come to the fore. A microprocessor

which permits associative searching of substrings would be particularly

desirable.

Many semantic errors can be detected at-run -time because an operational

— 
“violation ” (fault) will occur. Faults can be detected by means of

hardware (e.g. division by zero) or software (e.g. subscript bound) traps ,

or some combination of the two (cf. test for use of undefined variables).

Certain traps may only be practical (if at all) at the microprograming

level ; an example is that of bounding y~ajJLe~. of var~ables. (The bounds

can be supplied in compile-time declarations , as analog and COBOL programmers

must typically make.) With the availabilit y of “dynamic user microprograming ”

.. — - - T-——— - ..- 
~~~~~~~~~

— —-- -— ,--——-_,.~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ - —~-—-. - -.-—--.-----.- - - - - - --—--,---—--- -- — - - — - -  -
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[5], user trap commands can be a particularly valuable tool .

A trap generally detects a symptom of an error, not Its root cause .

Extensive post-mortem analyses would generally be necessary to identify

causes. To locate references to ~ suspicious variable , an associative

processor would be of great assistance. A search through program memory

would not be necessary if compile-time information (e.g. instruction and

data cross-reference tables) were saved for run-time reference. - Micro—

architectures that would facilitate representation and processing of such

structura l information (e.g. as sparse matrices) would be helpful .

Tracing of control flow or data accesses by insertion of probes has

been suggested earlier. Implementation of these probes at the micro-

programming level is a natural idea . While boolean probes can provide

important information , “frequency” probes are even more useful . A

record of flow and data access history is particularly of value , but

requires much memory space (generally too much for micro-control storage).

Therefore microarchitecture s facilitating the use of noncontrol memory

(main memory [5] or perhaps a dedicated buffer memory) for storage of monitored

information are desirable.

Finally, interactive graphics systems have a significant infl uence

on the feasibility of diagnostic approaches. Hence microarchitecture s

designed to facilitate graphics displays should prove of immense value .

Decision Table Programin~ [6]

Decision tables are commonly thought to be restricted in applica bility

to procedures involvi ng sequencing of tests , nested-IFs , or CASE statements.

However , we have shown that a decision table can implement any computable

function . One need only observe that any Turing Machine prOgram can be

-
~~~--~~~ -- -

~~
- —.-- . —- -- 
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“emulated” by a decision table by letting each Turing Machine instruction

of the form (input ,state)-~(output ,tape movement ,state) be represented

by a dec i~ ion table rule where (input ,state) are conditions and (output,

tape movement,state) are actions.

From a more practical point of view , it can also be shown that all

computer program flowcharts can be emulated by a decision table. That

this is true follows from the reducibility of all flowcharts to, in

essence , CASE statement form: genera lly, this requires the introduction

of a special variable for sequencing. Decision tables of this nature

are not recommended , however, since the underlying program logic is

obscured. Furthermore, emulation of a “poor” flowchart is likely to

lead to a poor decision table.

The foregoing means , in particular , that decision tables are

applicable to all scientific problems as well as to more traditional

business data processing problems . In fact, we may regard decision

tables as a general-purpose programing language with a control

structure that enforces certain desirable disciplines. To gain wider

acceptance , the development of efficient translator/processors and of

effective automated decision-table-program evaluation too-is will be

necessary. We have worked towards these goals , first by developing an

optimizing decision-table compiler procedure (discussed in Section C), and

second by showing how numerous software reliability concepts are applicable

to, and in some cases facilitated by, the use of decision tables.

For ex amp le , we have found that GOTO actions can be eliminated from

decision tables , essentially by use of a sequencing variable. An

algorithm for “reducing ” decision tables , subject to certain restrictions

on condition and action dependencies , was also developed ; a reduction of
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-
~~~~~ a decision table is a transformation of the table to an equivalent one

making less use of an auxiliary variable for sequencing.

We have also shown how checks for condition dependencies or ex-

cludabl e rules can be made in theory. In practice , these checks are

feasible only under certain restrictive assumptions.

The tabular form of decision tables offers certain advantages as

far as “systematizing ” correctness proofs is concerned. However,

we are not yet prepared to claim that decision tables are significantly

easier to prove correct. Difficulties relating to finding loop

invariants , for example , remain.

References

[1] Lew, A., “ A BASIC Operating System and Interpreter for Diagnostic and
Pedagogic Purposes”

[2] Lew, A., “Diagnostic Compilers and Debugging ”

[3) Lew, A., “Diagnostic Compiler and Debugging Systems: Microarchitectural
Implications ”

[4) Feustel , E.A., “On the Advantages of Tagged Architecture ,” IEEE Trans.
Comput., 1973, pp. 644-656.

[5] Thomas, R.T.,, “Organization for Execution of User Microprograms from
Main Memory: Synthesis and Analysis,” IEEE Trans. Comput., 1974,
pp. 733-790.

[6) Lew , A. and Tamanaha , D., “Decision Table Programing and Reliabil ity ”



-14-

C n ~cI5I~tLIABLE CONVERSION [1]

-Decision tables have long been an important tool , with appl i cability to

numerous practical business problems (e.g. work flow, product desi gn , quality

control , and manufacturing). Above , we have indicated that they are applicable

to all scientific problems as well. The desire for efficient run-time

processing of decision tables has led to many algorithms for converting

limited-entry decision tables to “optimal” computer programs , most of which

are heuristic. Two algorithms , however, guarantee optimality : that of

Reinwald -Soland [2,3] and Bayes [4). The former is based upon a branch-

and-bound technique and the latter upon dynamic programi ng . The two are

related , as are all mathematical programming procedures. They guarantee

optimality because they are essentially enumerative (combinatorial)

algorithms ; no nonenumerative algorithm can be optima l in general . The

price of run-time optimal ity is , of course , compile-time computational

complexi ty.

We have extended the works of Reinwald-Soland , and Bayes, and more

recently of Schumacher-Sevcik [5], to general decision tables. Specifically,

we developed a dynami c programing algorithm which guarantees optimality ,

taking into account extended or mixed entries , rule frequencies , different

optimality criteria , common action sets, ELSE rules , sequencing constraints

on condition tests , and excludable combinations of conditions . Transfor-

mation of extended-entry to limited-entry decision tables prior to

application of a conversion algorithm has been shown to introduce

inefficiencies; among other problems , the cost of testing conditions may

not be separable.

Given a set of condition-variables {X ,.. . ,X,j, let V . = { v . 1 , . . . ,V . } -1

be a set of “outcomes ” (extended-entries) associated with X1. Testing

of selec ts one element of V 1 as lts outcome, say vjj; we denote this by
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writing e(X 1 ) = v 13 . Let C(X1 IR) be the cost of testing X1 given

that the predicate R is true. Define fk({X s ,X5 ,. .  . ,X5 }1R~
) as the

1 2
minimum achievable cost having the k remaining untested variables {X

~1

~ 
given that Rk is true. Then, applying dynamic programing , we have the

following: Proposition. The optimal order of testing can be found by

so lv ing

r
~

fk({X l,.~~ 
,X5 } I R ~~ ) 

mm { C ( X . J R k ) + z 
~~~~ 

1({x ,. .. ,X } —

k 1 .
= 

5 S

{Xj} IR k A e(X1 ) = v 1~}

for 
~N ({X l,...,X N} I .TRUE.) given that f1({X 1) 1R 1) = C(X 1~R1).

The i c {s~,... ‘~k~ 
which yields the minimum in the above functional equation

designates the variabl e to be tested next (at stage k; k=N,... ,1) given

tha t  R k is true. (We remark that this proposition stemed from our earlier

study of redundant parallel processes [6].)

We observe that Rk is the intersection of predicates of the 
form

e(X.) = v.. for X. not in the set {X , . .  . ,X } of variables tested at
1 13 1 S1

the earlier stages, k+1,... ,N. If {X , .. .  ,X ) consists only of variabl es
S1 

Sk
which need not be tested given the outcome Rk, then C(X j IR k

) = 0 for each

such variable. Otherwise, we may let C(XI IR k) = c j*fl(Rk), where c1 is the

cost of testing X~, and fl(Rk) is the probability 
that Rk occurs . (T he

latter depends upon likel ihoods of various outcomes; equl-likel ihood may

be assumed if probabilistic or rule-frequency information is ~iot available.)

With the above definition our dynamic programing procedure yields the

hierarchical order of testing which minimizes the expected total cost

associated with the decision table. It should be emphasized that the ordering

Is not linear , but Is of tree form. - .
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To minimize expected time, let c1 be the time required to test condi-

tion-variable and fl(Rk) be the probability that the specified combination

of ou tcomes Rk obtains. C(Xi IR k) 0 if the subtable associated wi th Rk
has a common action set.

To minimi ze space, let c1 be the space required to test X 1, and r r (R k ) = 1

if the probability of Rk is nonzero , el se JT(R k ) = 0.

Sequencing constraints of the type X~ must be tested before Xq can be

handled by restricting the minimum in the functional equation to be taken

over only those X. in {X ,X , . . .  ,X } which can be tested before each of1 
~i ~2

the remaining condition variabl es. We note that each- such constraint de-

creases the computational requirements of the algorithm . More complex con-

straints can be handled in analogous fashion .

An ELSE rule can in principle be handled by replacing it by an equiva-

lent set of equi-probabl e rules with a common action . These rules may then

be treated no differently from other rules. A rule with a dashed (“don ’t-

care”) entry can also be replaced by an equivalent set of equi-probable rules ,

one for each predicate associated with the corresponding condition test. In

both cases, the introduced rules need not be assumed equi-probabl e if addi-

tional information is known.

Excludable rules are those with zero probability of occurrence. Tests

for suc h rules are un necessary in pr inc ip le , although for error-detection

reasons they may be desired nevertheless. An ELSE-rule is frequently used

as a catch-all for such a purpose. The dynamic programming algorithm as given

above (as well as the Reinwald-Soland algorithm) will yield tests for

excludabl e rules. In the event these tests are not wanted , a l ower cost

solution can be found using the dynamic programing algorithm by setting 11(R)

equal to zero if the set of actions associated with the truth of R, exclusive
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of actions of excludabl e rules , does not contain more than one element.

Furthermore , we observe that, insofar as our extension to extended-

entries is concerned , we have assumed a single cost for testing a condition

for all its possibl e outcomes. Where this cost can be divided among the

different outcomes, a division of the extended-entry condition into several

others (not necessarily limi ted-entry ones) would lead , in general , to a better

solution.
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0. DECIDABILITY PROBLEMS AND PETRI NETS [1,2,3)

We have considered a version of vector addition systems [4] for represent-

ing concurrent processes that uses the synchronization primitive PV (due to

Oijkstra) or its generalizations. A class of languages which can be

specified as the sets of allowabl e operation sequences of vector addition

systems has been studied . We have shown that it is decidable for a linear

functional 6 on the reachable configurations whether 6 takes only a finite

number of values over the reachable configurations , and the decision problem

whether 6 is lower-bounded by a given constant has been shown to be equiva-

lent to the point-reachability problem for vector addition systems. The

decision probl em whether a vector addition system is deadlock-free (or

live ) has been shown to be equivalent to the point-reachability probl em.

A standard technique for proving correctness of programs with the syn-

chronization primitive PV or its generalizations has al so been formulated

based on Presburger logic. Some probl ems on how to find a vector addition

system which meets specified synchronization requirements expressed as a

Presburger sentence have been studied .

Vector-addition-system can be represented as Petri nets [5]. Petri-net

models of synchronized concurrent processes were also studied , and a number of

other decidability results were established . The “reachability ” probl em

(i.e. whether or not an arbitrary “state” can be entered) is an open problem ,

and we have shown a number of other probl ems to be equivalent: namely,

“l iveness” , “deadlock—freeness” , “cons istency” , “reversibility ”, “equality ”,

and “inclusion. ” Some special conditions , under which the reachability problem

is undecidabl e, were also found.

Finally, suppose that a concurrent system is represented as a Petri net

N wi th an initial marking M which represents an initial safe state of the

—- - - - - —  —-
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system. Let RN(M) be the set of markings reachable from N , and let CN ( M)
be the set of markings M’ such tha t M ’ 

~ 
RN(M) and M c RN (M). If

RN (M) = CN(M), then N is said to be M-reversible and deadlocks are said

to be prevented in the system. We have shown that the deadlock prevention

problem in this sense is decidable. Deadlocks are said to be avoided in

the system if and only if actions can be chosen in such a way that only

markings in CN(M) are reachable. We have also shown that the deadlock

avoidance probl em in this sense is decidable. Furthermore, Petri nets in

which deadlocks are prevented and which have the same reachability set as

that of a given deadlock-avoiding system can be constructed .
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E. GRAMMATICAL INFERENCE SCHEMES

The grammatical inference problem is the task of specifying a grammar

that “best” describes a particular set of character strings . The associated

language should contain all the strings in the set and it should enjoy

all the properties that normally might be inferred from the sample set.

Results in this area are likely to have some impact on such areas as model

building, concept formulation and decision making under uncertainty .

Much of the original work on this subject was done by Feldman , et

a). [1,2,3). Their first cut at viabl e programs for inferring regular and

pivo t grammars is described in [1]. This pioneering work has served to

delimit some of the major avenues of research in this area and to stimu-

late others to explore related areas [4,5]. In particular we have been

investigating the extension of this problem to the case where input/output

strings are considered . The corresponding transducer inference problem

seems to be a natural setting for the traditional estimation problems

encountered in system s theory .

In terms of actual inference schemes , we have made one major

modification to that which was reported in [1], where a very concerted

effort was made to derive gramars that generated infinite sets of

strings. In our procedure, the manner in which production rules are combined

and simplified produce this effect as a natura l consequence of the nature

of the data . No explicit attempt i~ made to force a recursive grammar.

Another modification is that our scheme is abl e to process input/output

pairs in any order. This flexibility allows the scheme to be used

interactivel y so that additional inputs based on intermediate results

can be suppl i ed. Our scheme has been implemented in SNOBOL .

A comparison of some of our results with those reported in [1]

- - -
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indicate that in general our scheme was able to infer the “correct” model

wi th the same or fewer samples. There were two cases in which the inferred

models differed significantly. In one case we were able to infer an

infinite language where their model produced a finite language. The number

of nonterminals in both models were the same and the nature of the pro-

ductions were similar. This was a rather surprising result in view of the

fact that our scheme does not intentionally go after recursive grammars .

In the other case we inferred a simpler model (requiring one less nonter-

minal and similar production rules).

Currently we are investigating two avenues of further research. One

is concerned with the manner iii which this program is used to function

interactively with a user. Since the inference scheme is sensitive to

the arrangement of the sampled data , we would like to find good empirical

ways of selecting new input samples based on the results for previous data .

The other area of interest is concerned with finding upper bounds on the

lengths of the sampl e input strings based on the model complexities that

we are willing to tolerate. This would be the first step in a trade-off

analysis between grammatical comp l exity and modelling accuracy .

—p
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F. APPROXIMATE DYNAMI C PROGRAMMING [1]

Mathematical programing techniques have frequently been employed in the

solution of computer systems optimization problems . For example , dynamic

programing was used for multiprogramming problems [2,3] and for decision

table conversion [4]. unfortunately, for large systems , determination of

optima l solutions may become impractical for combinatorial reasons.

Consequently, approximation techniques may be necessary.

We have continued earlier studies on approximation methods made in

the context of “control” problems [5] in the hope that generalizations to

computer systems problems would be possible. While the precise results

obtained do not appear applicable , the general philosophy adopted---

that approximate methods for solving complex problems may (but not necessarily)

be better than exact methods for solving oversimplified problems---does

appear applicable. We have not , however , pursued this.
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